音声言語および自然言語処理シンポジウム(第254回自然言語処理研究会 )参加募集

●日程

2022年11月29日(火) 09:45 – 16:25
2022年11月30日(水) 09:30 – 17:00
2022年12月01日(木) 10:00 – 16:30

●会場

東京都港区芝公園3丁目5−8 機械振興会館 6-66会議室
http://www.jspmi.or.jp/kaigishitsu/access.html
発表は現地参加のみとさせていただいております.聴講は現地参加(人数上限あり)またはオンライン参加が可能です(ビデオ会議システムとしてZoomを利用予定).

●参加登録・現地参加登録の方法

参加登録は各研究会のページから申し込みをお願いいたします.
SLP/NL: https://www.ipsj.or.jp/member/event_moshikomi.html
SP/NLC: https://ken.ieice.org/ken/user/index.php?cmd=participation&tgs_regid=c7fb3df26b745f008b94a02648e80755c9e8750c9135b5583985212ddc9bc97b
★発表または聴講のため現地参加をご希望の方は,下記のフォームから申し込みをお願いいたします.感染防止対策のため,会場定数に達した時点で現地参加申込は締め切り,以降はオンラインでの参加をご案内します.上限に達してしまった場合にオンラインでの参加に回って頂くようお願いをする場合があります.
https://docs.google.com/forms/d/e/1FAIpQLSc1qMZ5fEXvEIKgv-YgdCu6emElxuegkv6R6XdPSCruYHdzqQ/viewform?usp=sf_link

●企画

今年も昨年に引き続き,四研究会合同プログラムを企画しております.一般セッションおよび特別セッション(音声と言語の分野横断)における21件の研究発表に加えて,合同プログラムにふさわしい招待講演セッションと国際会議参加報告セッションを予定しております.

==========================================================
11月29日(火) 13:30 – 14:15 招待講演(言語)
ドメイン言語処理でいかに戦うか:医療言語処理の現在
◯荒牧 英治(NAIST)

11月30日(水) 14:10 – 15:10 招待講演(音声(1))
雑音残響下での音声のブラインド音源分離
◯荒木 章子(NTT)

12月1日(木) 13:30 – 14:30 招待講演(音声(2))
半世紀以上も音声・聴覚を研究しているのか!? ~想定外が面白い~
◯河原 英紀(和歌山大)

==========================================================
11月30日(水) 12:30 – 13:50 国際会議参加報告(音声,言語)
国際会議INTERSPEECH2022参加報告(1)
◯佐藤 宏(NTT)
国際会議INTERSPEECH2022参加報告(2)
◯齋藤 佑樹(東大)
国際会議COLING2022参加報告
◯庵 愛(NTT)
国際会議AACL-IJCNLP2022参加報告
◯石原 祥太郎(日本経済新聞社)

また,関連イベントとして本イベントの2週間後に人工知能学会 言語・音声理解と対話処理研究会(SLUD)第96回研究会「第13回対話システムシンポジウム」が開催されます(12月13日(火),14日(木)).合わせて参加をご検討下さい.
https://jsai-slud.github.io/sig-slud/96th-sig.html

●プログラム

==========================================================
11月29日(火)
 09:45~10:00 オープニング
 10:00~12:00 Web応用
 13:30~14:15 招待講演(言語)
 14:35~16:25 音声認識(1)

11月30日(水)
 09:30~11:30 対話
 12:30~13:50 国際会議参加報告(音声,言語)
 14:10~15:10 招待講演(音声(1))
 15:30~17:00 特別セッション(音声と言語の分野横断)

12月01日(木)
 10:00~12:00 深層学習
 13:30~14:30 招待講演(音声(2))
 14:50~16:10 音声認識(2)
 16:10~16:30 クロージング

==========================================================
11月29日(火) 午前 オープニング (09:45~10:00)

−−− オープニング ( 15分 ) −−−

11月29日(火) 午後 Web応用 (10:00~12:00)

(1)/NLC 10:00 – 10:30
Link Prediction from Text Content by NLP Graph Embedding
— A Study on Chinese Journal Articles —
Tzu-Ying Yang・◯Hsuan Lei Shao・Chih-Chuan Fan・Wei-Hsin Wang(NTNU)

(2) 10:30 – 11:00
絵文字予測を感情分析の補助タスクとしたマルチタスク学習手法
□浅野 晴暉,松原 雅文 (岩手県立大)

(3) 11:00 – 11:30
メールにおける送信者署名の抽出
□藤田 正悟,高橋 寛治 (Sansan株式会社)

(4) 11:30 – 12:00
Sentence-BERTを用いたシラバスに基づく授業科目のクラスタリングと推薦
◯鈴木 大助 (北陸大)

−−− 昼食 ( 90分 ) −−−

11月29日(火) 午後 招待講演(言語) (13:30~14:15)

(5) 13:30 – 14:15
ドメイン言語処理でいかに戦うか:医療言語処理の現在
◯荒牧 英治(NAIST)

−−− 休憩 ( 20分 ) −−−

11月29日(火) 午後 音声認識(1) (14:35~16:25)

(6)/SP 14:35 – 15:05
Density Ratio Approachに基づく複数Encoder-Decoder音声認識モデル統合手法
◯北條圭悟・森 大輝・若林佑幸(豊橋技科大)・小川厚徳(NTT)・北岡教英(豊橋技科大)

(7) 15:05 – 15:35
混合ガウスモデルと特徴欠損理論に基づく短時間発話からの話者認識
◯今西 諒,川端 豪 (関西学院大)

(8) 15:35 – 16:05
内容語保存機構を備えた変分自己符号化器に基づくテキスト発話スタイル変換
□吉岡 大貴,安田 裕介 (名大),松永 悟行,大谷 大和 (株式会社エーアイ),戸田 智基 (名大)

(9) 16:05 – 16:25
二項事後分布に基づくN-gram言語モデルにおける継承係数の文脈依存性の検討
◯込山 航大,川端 豪 (関西学院大)
(ショート形式:発表10分+質疑10分)

11月30日(水) 午前 対話 (09:30~11:30)

(10)/NLC 09:30 – 10:00
雑談における機械翻訳を用いた主語の補完による話者情報の検出
◯連 慎治・伊藤敏彦・荒木健治(北大)

(11)/NLC 10:00 – 10:30
放送メタデータとユーザー生成テキストの照合のための時刻情報の扱い
◯小早川 健(NHK)・榊 剛史・大知正直・坂田一郎(東大)

(12)/NLC 10:30 – 11:00
前後文脈を用いた対話文の言い淀み検出
◯中島寛人・嶋田和孝(九工大)

(13) 11:00 – 11:30
前後の発話を文脈として考慮するニューラル音声認識誤り訂正
中村 朝陽,□李 聖民,田村 鴻希,吉永 直樹 (東大)

−−− 昼食 ( 60分 ) −−−

11月30日(水) 午後 国際会議参加報告(音声,言語) (12:30~13:50)

(14) 12:30 – 12:50
国際会議INTERSPEECH2022参加報告(1)
◯佐藤 宏(NTT)

(15) 12:50 – 13:10
国際会議INTERSPEECH2022参加報告(2)
◯齋藤 佑樹(東大)

(16) 13:10 – 13:30
国際会議COLING2022参加報告
◯庵 愛(NTT)

(17) 13:30 – 13:50
国際会議AACL-IJCNLP2022参加報告
◯石原 祥太郎(日本経済新聞社)

−−− 休憩 ( 20分 ) −−−

11月30日(水) 午後 招待講演(音声(1)) (14:10~15:10)

(18) 14:10 – 15:10
雑音残響下での音声のブラインド音源分離
◯荒木 章子(NTT)

−−− 休憩 ( 20分 ) −−−

11月30日(水) 午後 特別セッション(音声と言語の分野横断) (15:30~17:00)

(19)/SP 15:30 – 16:00
音声合成と音声認識に対するテキストデータを用いた半教師あり統合学習
◯牧島直輝・鈴木聡志・安藤厚志・増村 亮(NTT)

(20)/SP 16:00 – 16:30
どう言ったかを何を言ったかで表す ~ フォーカスを含んだ発話及びその含意を反映したテキストを含む英語コーパス ~
◯鱸 尚晃・中村 哲(奈良先端大)

(21) 16:30 – 17:00
声を含むデータベースの「使いやすさ」に関する一考察 ~No.7音声・歌唱データベース構築を実例として~
◯森勢 将雅 (明治大)
(ディスカッション形式:発表10分+質疑20分)

12月1日(木) 午前 深層学習 (10:00~12:00)

(22) 10:00 – 10:30
日本語 PromptBERT におけるプロンプトベース対照学習の有効性とプロンプトの性質の調査
□芝山 直希 (茨城大),古宮 嘉那子 (農工大),新納 浩幸 (茨城大)

(23) 10:30 – 11:00
言語モデルの第二言語獲得効率
□大羽 未悠 (NAIST),栗林 樹生 (東北大/Langsmith株式会社),大内 啓樹 (NAIST/理研),渡辺 太郎 (NAIST)

(24) 11:00 – 11:30
(発表キャンセル)

(25) 11:30 – 12:00
(発表キャンセル)

−−− ※本セッションは2件キャンセルがありましたので,11:00までとなります. −−−

−−− 昼食 ( 90分 ) −−−

12月1日(木) 午後 招待講演(音声(2)) (13:30~14:30)

(26) 13:30 – 14:30
半世紀以上も音声・聴覚を研究しているのか!? ~想定外が面白い~
◯河原 英紀(和歌山大)

−−− 休憩 ( 20分 ) −−−

12月1日(木) 午後 音声認識(2) (14:50~16:10)

(27)/SP 14:50 – 15:20
A Japanese Automatic Speech Recognition System on the Next-Gen Kaldi Framework
◯Wen Shen Teo・Yasuhiro Minami(UEC)

(28)/SP 15:20 – 15:50
Domain and language adaptation of large-scale pretrained model for speech recognition of low-resource language
◯Kak Soky(Kyoto University)・Sheng Li(NICT)・Chenhui Chu・Tatsuya Kawahara(Kyoto University)

(29)/SP 15:50 – 16:10
大規模音声データのみ獲得できる環境下への音声認識モデルのドメイン適応
◯木内貴浩・森 大輝(豊橋技科大)・小川厚徳(NTT)・北岡教英(豊橋技科大)

12月1日(木) 午後 クロージング (16:10~16:30)

−−− クロージング ( 20分 ) −−−

□:NL研の若手奨励賞選奨対象者
◯:その他

一般講演:発表 20 分 + 質疑応答 10 分
一般講演(ショート形式):発表 10 分 + 質疑応答 10 分
一般講演(ディスカッション形式):発表 10 分 + 質疑応答 20 分

協賛:
◆IEEE Signal Processing Society Kansai Chapter
◆IEEE Signal Processing Society Sendai Chapter
◆IEEE Signal Processing Society Tokyo Chapter
◆APSIPA Japan Chapter

●本シンポジウムに関する問い合わせ先

(SP/SLP) 増村 亮(日本電信電話株式会社)
(NLC) 光田 航(日本電信電話株式会社),小早川 健(NHK)
(NL) 萩行 正嗣(株式会社ウェザーニューズ)
nl-sympo@googlegroups.com宛のメールは,上記の幹事団全員に届きます.

●研究会一覧

★言語理解とコミュニケーション研究会(NLC)
専門委員長 吉田 光男 (筑波大) 
副委員長 坂地 泰紀 (東大), 小早川 健 (NHK)
幹事 光田 航 (NTT), 石野 亜耶 (広島経済大)
幹事補佐 高橋 寛治 (Sansan), 小川 泰弘 (名大)

★音声研究会(SP)
専門委員長 戸田 智基 (名大)
幹事 増村 亮 (NTT), 中鹿 亘 (電通大)
幹事補佐 相原 龍 (三菱電機), 齋藤 大輔 (東大)

★自然言語処理研究会(IPSJ-NL)
主査 須藤 克仁 (奈良先端科学技術大学院大学)
幹事 内海 慶 (株式会社デンソーアイティーラボラトリ), 内田 ゆず (北海学園大学), 古宮 嘉那子 (東京農工大学), 萩行 正嗣 (株式会社ウェザーニューズ), 吉永 直樹 (東京大学), 吉野 幸一郎 (理化学研究所)

★音声言語情報処理研究会(IPSJ-SLP)
主査 戸田 智基 (名古屋大学)
幹事 増村 亮 (NTT), 中鹿 亘 (電気通信大学), 相原 龍 (三菱電機), 齋藤 大輔 (東京大学)

音声言語および自然言語処理シンポジウム(第254回自然言語処理研究会 )発表募集

第24回音声言語シンポジウム(SP/SLP)兼第9回自然言語処理シンポジウム(NLC/NL)を11月29日(水)~12月1日(金)に開催します.今回は2年ぶりに現地開催をベースとしたハイブリッド形式となります.

1999年より開催されている音声言語シンポジウムと,2014年から行っている自然言語処理シンポジウムの合同シンポジウムとなっている本シンポジウムでは,毎年,音声言語および自然言語処理に関する招待講演等の企画と多くの一般発表が行われ,盛況なイベントとなっています.皆さまからの投稿を心よりお待ちしています.

★今回の音声言語・自然言語処理シンポジウムでは,新しい試みとして,通常の一般セッションに加えて特別セッション「音声と言語の分野横断」を新設し,発表を募集します.特別セッション中の発表のみを対象にした選奨も行います.

●日程: 2022年11月29日(火),30日(水),12月1日(木)
発表件数に応じて2日間または3日間開催とし,11月29日(火)は予備日です.

●会場: 東京都港区芝公園3丁目5−8 機械振興会館 6-66会議室
★発表は現地参加のみとさせていただきますが,リアルタイムのオンライン配信を行うため,聴講および質問はオンライン参加でも可能です(ビデオ会議システムとしてZoomを利用予定).

●発表申込締切: 2022年10月11日(火)

●原稿締切: 2022年10月27日(木)※ 厳守
大変恐縮ですが,一部のメーリングリストにて10月28日(金)と記載されたCFPが送付されておりますが,正しくは10月27日(木)が原稿〆切となります.

●主催
 電子情報通信学会および日本音響学会 音声研究会(SP)
 電子情報通信学会 言語理解とコミュニケーション研究会(NLC)
 情報処理学会 音声言語情報処理研究会(SLP)
 情報処理学会 自然言語処理研究会(NL)

●協賛
 IEEE Signal Processing Society Kansai Chapter
 IEEE Signal Processing Society Sendai Chapter
 IEEE Signal Processing Society Tokyo Chapter

今年も昨年に引き続き,四研究会合同プログラムを企画しております.また,それにふさわしい招待講演セッション(今年度の新たなIEEE Fellowの記念講演等)を予定しております.

音声認識・音声合成・音声対話・感情音声・音声インタラクション・音声分析・対話言語処理・応用システムなど,音声言語処理に関する幅広い分野の発表,また,自然言語処理の学術的な発表をはじめ,テキストアナリティクスの応用事例や,今後の研究提案や問題提起などのポジションペーパーまで自然言語処理についても広く募集します.研究のスタートアップ段階の発表も歓迎です.

また,関連イベントとして本イベントの2週間後に人工知能学会 言語・音声理解と対話処理研究会(SLUD)第96回研究会「第13回対話システムシンポジウム」が開催されます(12月13日(火),14日(木)).合わせて参加をご検討下さい.
https://jsai-slud.github.io/sig-slud/96th-sig.html

●発表形態: 口頭発表(詳細については追ってご連絡いたします)
★発表は現地参加のみとさせていただきます.
※ リアルタイムのオンライン配信を行うため,聴講および質問はオンライン参加でも可能です(ビデオ会議システムとしてZoomを利用予定).

※ 発表時間の調整について
従来の一般講演形式に加えてショート形式(発表時間全体を短かくしたもの),討議形式(発表時間を短かくし,質疑時間を長くしたもの)など,発表者からの要望に応じて発表時間を調整します.アイデアレベルの研究の紹介や,研究の詳細まで話したいので時間がほしい,などの要求を発表申込の備考欄にご記入いただければ,それらを考慮してプログラムを作成します.ぜひご活用ください.

★特別セッション「音声と言語の分野横断」での発表を希望する場合は,各研究会における発表申込の際に,研究会所定の方法で申告をお願いします.プログラム作成および選奨に利用します.

●特別セッション:「音声と言語の分野横断」
本特別セッションでは,音声と言語の両分野にまたがって,単一のモーダルに留まらない情報を扱った研究発表を広く募集します.音声認識,音声合成,音声対話,音声翻訳,音声と言語の双方を含むコーパスの構築や分析等,音声と言語の両分野をカバーする研究を分野に限らず幅広く募集します.

★ 音声と言語の分野横断的研究を奨励することを目的とし,新しく特別セッションを対象とした選奨を設けます.本選奨は各研究会が個々に設けている選奨とは独立に行い,本シンポジウムにおける特別セッションの発表のみを対象とします.

●発表申込先
SP,SLP,NL,またはNLC研究会へ発表申込を行います.それぞれの研究会の発表申込方法は以下をご覧ください.

●SP・NLCへ申し込みの方はこちら
発表申込みは,電子情報通信学会 研究会発表申込システム
SP研究会: http://www.ieice.org/ken/program/index.php?tgid=SP
NLC研究会: http://www.ieice.org/ken/program/index.php?tgid=NLC
より,開催回の「発表申込受付中」リンクからご記入・送信ください.
研究会への投稿に関するご案内・方法・FAQ は
https://www.ieice.org/jpn/kenkyuukai/toukou.html
にございますので合わせてご覧ください.

SP/NLC研究会では,発表の予稿は6ページ以内,日本語・英語いずれによる記述も可です.

○音声研究会では若手研究者(35才以下)の優秀発表に対して,音声研究会研究奨励賞を設けさせていただいております.2019年度末時点で35才以下の発表者(第一著者)の方は,音声研究会研究奨励賞の選奨対象となります.選奨対象である場合は,上記申込システムによる入力時,研究会アンケートの研究奨励賞の欄にチェックを入れて下さい.

○NLC研究会へ申し込まれた場合は,NLC研究会2022年の優秀研究賞・学生研究賞の選考対象となります.

●SLP・NLへの申し込みの方はこちら
SLP:https://ipsj1.i-product.biz/ipsjsig/SLP/
NL:https://ipsj1.i-product.biz/ipsjsig/NL/
(研究会ホームページからもアクセスできます)

○SLP研究会企業賞
本研究会のダイヤモンドレベル企業スポンサー名をお借りして,1月〜12月までに行われた研究会で業績の優れた発表,あるいは将来性のある発表を行った学生に企業賞を授与します.選考対象となるのは,以下の発表です.SLP研究会に第1著者として発表を申し込み,発表時において博士学生,修士学生,もしくは学部生であり,当日実際に発表を行った者.
詳細URL: http://www.ipsj.or.jp/award/slp-award2.html選考対象となる場合は【研究会への連絡事項】の欄へ「SLP研究会企業賞対象発表」と記入してください.
※さらにSLPへ申し込まれた場合は,自動的に山下記念研究賞の選奨対象となります.

○優秀研究賞(NL研のみ)
研究会に投稿された予稿の中から特に優れたものを優秀研究賞として表彰する予定です.

○若手奨励賞(NL研のみ)
年度開始時点(4月1日)で30歳未満,あるいは学生(社会人博士含む)方を対象と して,研究会参加者の投票によって選考します.

●参加費について
SP/SLP/NL/NLCは共催・連催となっておりますが,プログラム上は混合です.申込先または主目的で参加する1つの研究会の参加費をお支払いいただければ,すべてのプログラムに参加可能です.
※電子情報通信学会の申し込みサイトには,「掲載料」との記述がある場合がありますが,掲載料はかかりません.ただし,当日参加される発表者にも参加費をお支払い頂きます.
なお,何らかの事情でWeb からのお申込みができない場合は,問い合わせ先まで E-mail でご連絡下さい.

●本シンポジウムに関する問い合わせ先:
(SP/SLP) 増村 亮(日本電信電話株式会社)
(NLC) 光田 航(日本電信電話株式会社),小早川 健(NHK)
(NL) 萩行 正嗣(株式会社ウェザーニューズ)
nl-sympo@googlegroups.com宛のメールは,上記の幹事団全員に届きます.

情報処理学会 第253回自然言語処理研究会 参加募集

情報処理学会 第253回自然言語処理研究会 参加募集

●日程: 2022年9月29日(木) 10:00-17:30, 30日(金) 10:00-17:00
●会場: 現地+オンライン(Zoom)のハイブリッド
現地会場: 〒606-8501 京都府京都市左京区吉田本町
京都大学 総合研究8号館 第1講義室
(キャンパスマップ [59]の建物の1階)
https://www.kyoto-u.ac.jp/ja/access/campus/yoshida/map6r-y

●参加申し込み(全員):
参加を希望される方は情報処理学会マイページの「会員メニュー」->「イベント一覧・申込」より参加申込をお願いいたします(当日でも申込可能).
非会員の方もマイページを開設してお申し込みください.

参加申込をしていただくと,会場のURL情報や研究報告のダウンロード方法を記載したメールをお送りします.
参加費無料の研究会登録会員/ジュニア会員も,URLの取得と参加者数の把握のため,マイページからの参加申込が必ず必要です.

学会サイトの「イベントに参加申込される方へ」もご参照ください.
https://www.ipsj.or.jp/member/event_moshikomi.html

情報処理学会個人会員 / 準登録(個人)の方
https://www.ipsj.or.jp/member/event_moshikomi.html#hdg3  (マイページの、会員メニューの「イベント一覧・申し込み」に第253回のNL研がございますので、それを選べば参加申し込みができるようになっているはずです。)  
情報処理学会へ入会し,会員価格で参加したい方   
https://www.ipsj.or.jp/member/event_moshikomi.html#hdg1
非会員のまま参加したい方※賛助会員としてお申込みの方もこちらからご登録お願いします。
https://www.ipsj.or.jp/member/event_moshikomi.html#hdg2

●現地参加申込(現地参加希望者のみ):
現地参加を希望される方は,上記の通り情報処理学会ページで参加申込を行った上で、以下の申込フォームから現地参加申込を追加で行って下さい。
https://forms.gle/JcPELCqAt3XYJpha6

9/22追記: 現地参加申し込みは先着順です。上限に達し次第フォームを締め切ります。

●現地での感染防止対策について
現地では感染防止対策として,参加者の皆様にマスクの着用および当日参加前の検温をお願いします.また現地参加に関しては会場のキャパシティから上限を70名に制限し,発表者を優先の上,聴講者に関しては申込順に受け付けをさせて頂きます.上限に到達次第,それ以降のお申込についてはオンラインでの聴講をお願いすることになりますので,現地参加を希望される方は早めのお申込をお願いいたします.またこの問題から,現地参加は事前登録者のみとし,当日参加は受付を行いません.あらかじめご了承下さい.

現地会場では受付時の簡易体温測定や消毒液による手指の消毒等へのご協力をお願いするとともに,建物内でのマスクの着用を徹底していただきます.現地会場参加申込みにあたってはこれらを含む事項に同意いただく必要があります.

●参加費:
NL研究会登録者:無料
情報処理学会ジュニア会員:無料
情報処理学会正会員、賛助会員、名誉会員:2,000円
情報処理学会学生会員:500円
情報処理学会非会員(一般):3,000円
情報処理学会非会員(学生):3,000円

●問い合わせ先:
吉野 幸一郎(理化学研究所)
E-mail: koichiro.yoshino[AT]riken.jp

===================================
プログラム
9月29日(木)
9:50-10:00 オープニング
10:00-11:30 [3件] 解析
13:00-15:00 [4件] 生成・実世界応用
15:15-16:15 [招待講演]
16:30-17:30 [2件] 深層学習の性能調査
9月30日(金)
10:00-12:00 [4件] 言い換え、スタイル
13:00-15:00 [4件] 談話構造、誤り訂正
15:15-16:45 [3件] 知識、メタデータ
16:45-17:00 クロージング
————————————————————-

※若手奨励賞の対象者には著者名の前に「○」を付けています.

一日目
[10:00-11:30] 解析
[1] 平仮名BERTによる平仮名文の分割
〇井筒 順(茨城大学),古宮 嘉那子(東京農工大学),新納 浩幸(茨城大学)
日本語を形態素に解析するためにMeCabやChasen等の形態素解析システムが存在している。現在存在している日本語の形態素解析システムの精度は非常に高いが、これらのシステムは漢字仮名混じりの文章を対象にしているため全て平仮名で書かれた文章を形態素に分割することは難しい。 本稿ではunigram BERTとbigram BERTの2種類の平仮名文分割モデルを作成した。BERTモデルの作成に際し事前学習データとしてWikipedaのデータをMeCabを用いて形態素解析し読みの部分を平仮名に変換したものを利用した。また、ファインチューニングのデータとしてBCCWJのコアデータを利用した。ファインチューニング用のデータも事前学習データと同様にBCCWJのコアデータにおける読みの部分を平仮名に変換したものを利用している。さらに、作成した2種類のBERTの平仮名文分割における精度を比較するためにKyteaを用いた平仮名文の分割モデルを作成した。 BCCWJのコアデータを用い5分割交差検証を行いunigram BERTでは97.67%の精度を、bigram BERTでは96.44%の精度を得た。

[2] KWJA:汎用言語モデルに基づく日本語解析器
〇植田 暢大(京都大学),大村 和正(京都大学),児玉 貴志(京都大学),清丸 寛一(京都大学),村脇 有吾(京都大学),河原 大輔(早稲田大学),黒橋 禎夫(京都大学)
テキストマイニングなどend-to-end学習になじまない言語処理アプリケーションを構築するためには,形態素解析や述語項構造解析などの言語解析をテキストに適用する必要がある.これまで,解析器はそれぞれのタスクごとに開発されており,それらを繋いで利用するにはコストが高いという問題があった.本研究では,汎用言語モデルに基づく高精度な統合的日本語解析器を設計し,構築する.本解析器は,タイポ修正,分かち書き,形態素解析,言語素性付与,構文解析,述語項構造解析,橋渡し照応解析,共参照解析,談話関係解析という多くの解析を統一的なインターフェイスで実現する.構築した解析器はhttps://github.com/ku-nlp/kwjaで公開している.

[3] 疑似訓練データを用いたBERTによる同形異音語の読み推定
〇小林 汰一郎(茨城大学),古宮 嘉那子(東京農工大学),新納 浩幸(茨城大学)
日本語には読みに曖昧性を持つ単語が多数存在する。例えば「辛い」は「カライ」のほかに「ツライ」と読むこともできる。このような単語を同形異音語と呼ぶ。本論文では、BERTを用いて同形異音語の読み推定を行う。訓練・テストデータには現代日本語書き言葉均衡コーパス(BCCWJ)と日本語話し言葉コーパス(CSJ)を利用した。BCCWJの大半を占める非コアデータの読みは、形態素解析システムMeCabにより機械的に割り振られたものである。また、BCCWJは書き言葉であり、CSJは話し言葉なので、ドメインのずれが想定される。CSJをターゲット領域としたとき、通常はこの領域の訓練事例を用いて読み推定のモデルを学習・構築すればよいが、訓練事例の構築コストが高いという問題がある。本研究では自動的に付与されたドメイン外の大量の疑似データ(BCCWJのデータ)を利用することで、本来必要としたターゲットの領域の訓練事例の量を大幅に削減することができた。

[13:00-15:00] 生成・実世界応用
[4] レーシングゲーム実況テキストモデリングのための運動力学的素性
石垣 達也(産業技術総合研究所),上田 佳祐(産業技術総合研究所),トピチ ゴラン(産業技術総合研究所),小林 一郎(お茶の水女子大学),宮尾 祐介(東京大学),高村 大也(産業技術総合研究所)
本稿では,レーシングゲーム実況テキストモデリングのための運動力学に基づく素性を提案する. また、モデリングタスクとして従来の実況発話生成に加え、実況発話プランニング、実況発話分類を新たに提案する。 実況ではサーキット上で起こるイベントを実況者が正しく認識し発話される。 従来、モデリングタスクの一つである実況発話生成ではレーシングカーのスピードやハンドル角度といった生データを入力とし、ニューラルネットワークを用いた手法により言語生成している。 実際の実況には「ターン2、曲がっていけるか?」といった発話が多く、コーナーであるか否かや、レーシングカーサーキット場での位置といったより深い状況認識が行われている。 本研究では従来から用いられていた生データに加え、新たに3つの素性を用いてモデリングタスクの性能向上を目指す。 特に提案素性のうち2つは運動力学的な計算によりレーシングカー加速や回転を捉える。 既存データセットを用いた実験より、生成タスクおよびプランニングタスクにおいて提案素性の効果を確認した。 力学的な計算により物体の動きを捉え素性とする手法は、物体の動きを捉える天気予報生成などの言語処理タスクにも汎用的に応用できる可能性がある。

[5] 気の利いた家庭内ロボット開発のための曖昧なユーザ要求と周囲の状況の収集
〇田中 翔平(奈良先端科学技術大学院大学/理化学研究所),湯口 彰重(理化学研究所/奈良先端科学技術大学院大学),河野 誠也(理化学研究所),中村 哲(奈良先端科学技術大学院大学),吉野 幸一郎(理化学研究所/奈良先端科学技術大学院大学)
人と協働する対話ロボットは,ユーザの要求に応じて適切なタスク行動を行うことが一般的である.しかしユーザの要求はしばしば顕在化されず,対話ロボットはそうした状況でも,周囲の状況を適切に読み取りユーザが必要とする行動を取ることが期待される.こうした気の利いた行動をとることができるロボットを実現するため,リビングやキッチンにおいてユーザの家事を補助するタスクを対象に,ユーザの発話と周囲の状況に対応する気の利いたロボットの行動からなるデータを構築した.データ構築の方法として,本研究では大きく分けて三段階の手順を踏んだ.まず “ペットボトルを持ってくる” など,ロボットがとることのできる気の利いた行動をあらかじめ定義し,それらの行動をとっているロボットの映像を収録した.次に収集した行動の映像をクラウドワーカーに視聴してもらい,どのような状況でロボットがその行動をとってくれたら気が利いていると思うかをテキストで入力してもらった.最後に収集した状況のテキストに基づき,ロボットが気の利いた行動をとる直前のユーザの発話が行われる状況に紐付けられた画像を収集した.一般にロボットの学習で用いることができるデータは収集コストが大きいため,本研究ではごく少数のデータを収集し,収集した画像から得られる説明的な特徴量についてのアノテーションを行った.構築した少数データセットを用いて気の利いた行動を選択するロボットを実現するため,ユーザの発話内容や画像の畳み込みのみを特徴量として用いる分類器や,説明的な特徴量も用いるマルチモーダルな分類器など,複数のベースラインモデルを構築した.構築したベースラインモデルの性能を比較したところ,単純に画像の畳み込みや事前学習モデルによる特徴量抽出を用いるよりも,人手で付与した画像特徴に関する説明的なアノテーション結果がより分類精度の向上に寄与し,画像から抽出する情報の種類が重要であることが示された.

[6] 説明文生成を用いた動作行動予測
〇中村 泰貴(東京大学),河野 誠也(理化学研究所),湯口 彰重(理化学研究所),川西 康友(理化学研究所),吉野 幸一郎(理化学研究所)
ロボットをはじめとする人間を支援するシステムは、その観測から状況を正しく理解し、人間が必要とする支援行動を出力する必要がある。 特に人間を対象とした支援において、システムがどのような状況理解を行い、どのような動作行動の生成しようとしているかは、言語で表現することが重要である。 そこで本研究では、現在の状況からシステムが行うべき行動を予測しその内容を言語で説明する、動作行動予測とその言語化 (captioning operative action) に取り組む。 具体的には、ある状況とそこに対して何らかの支援行動が行われた状況の画像を入力とし、どのような支援行動が行われたかを説明する言語化タスクを行う言語化システムを構築した。 この際、単純に画像を入力として用いるのではなく、その間に行われた支援行動に相当する動作のシーングラフ予測を補助タスクに用いた。 補助タスクを用いることで、シーングラフのアノテーションが存在しないテストセットに対しても精度高く動作行動の予測と言語化を行うことができることが確認された。

[7] テキストマイニングツールのログからの実験設定の説明文生成
〇森田 康介(京都大学),西村 太一(京都大学),亀甲 博貴(京都大学),森 信介(京都大学)
実験設定を適切に記述することは、科学技術論文において重要である。 本研究では、テキストマイニングツールのログから実験設定の説明文を生成することを目的とする。 人文科学分野において広く使用されているKH coderを用いている論文を対象に収集し、論文中の実験設定の記述と実際のツールの実行ログを再現したもののペアからなるデータセットを構築した。また、このデータセットを用いて論文中の記述から実行ログを推定するモデルを構築し、アノテーションしていない論文に適用することにより自動的にデータセットを拡充した。これらを用いて、実験ログから説明文を生成するモデルを構築した。

[15:15-16:15] 招待講演
[8] 論理に基づく推論システムの再訪
谷中 瞳(東京大学/理化学研究所)
自然言語の意味を計算処理可能な形式で表し、文と文との意味的な関係を自動判定する自然言語推論システムは、計算機による自然言語理解の根幹をなす技術である。現在、自然言語処理分野では、深層学習によって自然言語の意味を大量のテキストデータから学習する統計的なアプローチが活発に研究されているが、否定や数量表現、比較表現、時間関係など、様々な意味の扱いに課題がある。一方で、形式意味論では記号論理を用いてこれらの意味を分析する理論が成熟しつつあり、自然言語処理と形式意味論の利点、深層学習と記号論理の利点を組み合わせることで、高性能な推論システムの構築が期待できる。本講演では、我々の推論システムに関する最近の取り組みを紹介し、現状の到達点と課題を述べる。

[16:30-17:30] 深層学習の性能調査
[9] スキップレイヤー法を用いた BERT の分析
〇喜友名 朝視顕(東京都立大学),岡 照晃(東京都立大学),小町 守(東京都立大学)
本研究において,連続する一部の層を恒等関数に置き換えることをスキップレイヤー法と呼ぶことにする.BERT に対してスキップレイヤー法を適用したときの性能には,正解ラベルごとに異なるパターンがみられることがわかった.これは,BERT 上で重要な層が正解ラベルごとに異なることを示唆している.そこで,BERT への理解をさらに深めるために,正解ラベルとパターンの関係を分析する.

[10] 事前学習済み言語モデルの主観的知識の調査
〇小林 篤弥(工学院大学),高橋 良颯(工学院大学),山口 実靖(工学院大学)
自然言語処理において,BERTやGPTなどの事前学習済みの活用が普及し,それら言語モデルの内包する知識の調査などが行われている.本稿では,著名な言語モデルの一つであるGPT-3に着目し,そのモデルが内包する主観的な知識について調査し,その偏りについて考察する.

二日目
[10:00-12:00] 言い換え、スタイル
[11] 変数置き換えモデルを用いた医薬品情報の可読性分析と検索件数を用いた複合名詞の文章平易化の検討
赤木 信也(NTTデータ先端技術株式会社)
英文と日本語文の両文に適用可能な可読性指標として, 変数置き換えモデルによる可読性指標を提案した.言語モデルである帯2との比較により, 日本語文を大まかに分類できること, 形態素分割より字種分割を用いる方法が最適であることが示された.また, 英文と日本語翻訳文の比較により, 日英両文に適用可能であること, 対応付けとして字種分割(ひらがな・片仮名の再分割なし)を用いる方法が最適であることが示された.更には, 医薬品添付文書とくすりのしおりの比較により, 古典的な手法よりも正確に判定できること, および英語圏の質保証基準を援用できることが示された.そして, 検索件数を用いた助詞『の』の自動補完による複合名詞の文章平易化を検討した結果, jFREの値が45未満の文章をjFREの値が45以上になるように平易化できることが示された.ただし, 形態素解析時や複合名詞抽出時において, 自動補完の調整が必要な用語が存在しており, 自動補完手法の改善が求められる.

[12] スタイル分離に基づくスタイル変換と異常検知の同時学習に基づく文書のスタイル一貫性改善
〇京野 長彦(東京大学),吉永 直樹(東京大学),佐藤 翔悦(東京大学)
文書のスタイルは文書全体で一貫していることが望ましいが,意図せず不適切なスタイルの文が混入することも多い.そのため,我々は一部に異なるスタイル文の混入した文書のスタイル一貫性を改善するタスクに取り組んでいる.本研究では,スタイルの分離に基づくスタイル変換器と自己教師ありに基づく異常検知器の同時学習を用いてこれを解く手法を提案する.具体的には,既存のスタイル変換データセットを用い,無作為に文を組み合わせて擬似的な文書の学習データを自動構築する.このようにして自動構築した学習データを用いて,その入力文書に含まれる各文のスタイルをベクトル表現として分離し,教師ありTransformer異常検知器と教師なしスタイル変換器にそれぞれ入力して各モデルを同時学習させる.推論時には前者の異常検知器を用いて異質なスタイルで書かれた文を検出し,そこで検出された文を,後者のスタイル変換器を用いて,入力中の他の文のスタイルを考慮して変換する.予備実験として,4種類のスタイル変換データセットを用いて,上記の方法で人工的な学習・評価データを構築して性能を評価する.また,実際の文章に提案手法を適用し,実際的な評価を行う.

[13] T5 による特定キャラクター風発話への変換とその言語モデルの構築
〇岸野 望叶(茨城大学),古宮 嘉那子(東京農工大学),新納 浩幸(茨城大学)
現在、Siriなどの対話エージェントが盛んに利用されていたり、RPGなどのゲームで大量のセリフが必要になったりする。それらの発話はキャラクターらしさを含んでいることが求められる。しかし、特定のキャラクターに特化した言語モデルの構築を行うには学習データが限られており精度の向上は困難である。そのため本論文では対象の発話者と同作品に出てくる別人物の発話をT5を用いて、対象発話者の発話風に変換し、学習データを増補する。その学習データを「ドメイン」の学習データ、対象の発話者の発話を「タスク」の学習データとし、TAPT-DAPTの手法でベースの言語モデルとなるGPT2にファインチューニングを行った。その結果、GPT2に対象の発話者の発話のみで学習を行った場合のパープレキシティが46.23 であったのに対し、この手法で行った場合のパープレキシティは43.93 となり、精度を向上させることができた。

[14] 口調ベクトルを用いた小説発話の話者推定(オンライン)
〇石川 和樹,宮田 玲,小川 浩平,佐藤 理史
話し方には,その人らしさが反映される.小説の発話ではこの事実を利用し,話者の個性や人物像を発話に反映させ,話者が誰であるかを間接的に示すことがしばしば行われる.本論文では,この点に着目し,口調の違いに基づく小説発話の話者推定法を提案する.本方法の中核は,発話を口調ベクトルに変換する機構(口調ベクトル変換器)とその構成法にある.小説の話者は,それぞれの小説で異なるため,推定対象話者に対して大量の発話データを用意することは非現実的である.そこで,あらかじめ他の小説の発話データを用いて,発話の口調を推定する口調弁別器をニューラルネットを用いて構成し,このニューラルネットを口調ベクトル変換器として利用する.実際の話者推定では,推定対象話者の少量の発話データより,その話者の代表口調ベクトルを作成し,ベクトルの類似度を用いて,話者を決定する.

[13:00-15:00] 談話構造、誤り訂正
[15] オンライン会議における議論の要点と対話の雰囲気の認識技術の開発
後藤 啓介(京セラ株式会社),新美 翔太朗(京セラ株式会社),荒川 智哉(京セラ株式会社),西田 典起(理化学研究所),松本 裕治(理化学研究所),廣島 雅人(京セラ株式会社)
オンラインで行われる会議では視聴覚情報の制限や遅延により議論の流れや雰囲気を把握しづらいという課題がある.この課題解決のために,著者らはオンライン会議における議論の要点および対話の雰囲気の認識技術の開発に取り組んでいる.本稿では,オンライン会議の対話データセットの構築および対話の雰囲気のアノテーション,ならびに,非言語情報を考慮した議論の要点抽出および発話の感情分析をベースとした対話の雰囲気認識の各技術についての検討内容を報告する.

[16] オンライン会議での自動要約のためのマルチモーダル情報を考慮した重要発話抽出に関する検討
〇新美 翔太朗(京セラ株式会社),後藤 啓介(京セラ株式会社),西田 典起(理化学研究所),松本 裕治(理化学研究所),荒川 智哉(京セラ株式会社),廣島 雅人(京セラ株式会社)
近年,ビデオ通話アプリの台頭により,会議を従来のようにオフラインで行うのではなくオンラインで行う機会が増加している.オンライン会議はオフライン会議と比較し,通信システムを介することで生じる視聴覚情報の制限や遅延により議論の流れを把握しづらいという課題がある.以前より画像や音声といったマルチモーダル情報を考慮した自動要約技術も研究が行われてきたが,それらは主にオフラインでの会議を考慮した研究であり,オフライン会議においても同様の結果が得られるとは言えない.そこで,本研究ではオンライン会議において得られるマルチモーダル情報を考慮した重要発話抽出手法を提案し,自動要約の精度向上によるオンライン会議の理解促進を目指す.

[17] 日本語文法誤り訂正評価コーパスへの誤用タグ付け
〇小山 碧海(東京都立大学),喜友名 朝視顕(東京都立大学),三田 雅人(株式会社サイバーエージェント/東京都立大学),岡 照晃(東京都立大学),小町 守(東京都立大学)
本稿では日本語文法誤り訂正評価コーパスへの誤用タグ付けを行う.日本語学習者が犯す誤りには助詞誤りや時制誤りなど様々な誤りが存在する.しかし日本語文法誤り訂正評価コーパスの一つである TMU Evaluation Corpus for Japanese Learners (TEC-JL) には誤りを分類するための誤用タグが付与されていない.そこで本研究では誤用タグを設計し TEC-JL 中の各誤りに付与する.また付与した誤用タグを利用し,日本語文法誤り訂正モデルを誤りタイプ別に評価した結果を報告する.

[18] 後続文脈の考慮が文法誤り訂正性能にもたらす影響の調査
〇井手 佑翼(奈良先端科学技術大学院大学),出口 祥之(奈良先端科学技術大学院大学),五藤 巧(奈良先端科学技術大学院大学),Sarhangzadeh Armin(奈良先端科学技術大学院大学),渡辺 太郎(奈良先端科学技術大学院大学)
既存の典型的な文法誤り訂正モデルは各入力文を独立に扱うため,文脈を考慮した訂正を行えない.この問題に対して先行研究では,訂正対象の文だけでなく,先行する文脈をモデルに入力する手法が提案されてきた.本研究は,これに加えて後続の文脈または前後両方の文脈を入力した場合に訂正性能がどのように変化するか,定性分析を交えて調査する.

[15:15-16:45] 知識、メタデータ
[19] 言及に対する地理的特定性指標の提案と文書ジオロケーションへの適用
〇陰山 宗一(筑波大学),乾 孝司(筑波大学)
本稿では,文書内に出現する地名やランドマーク等に関する言及に対し,その地理的位置の特定のしやすさを表す指標として地理的特定性を提案・検討する.この指標は,文書ジオロケーション課題のような言語情報を用いた地理的課題を解く上での特徴量として用いることを想定している.また,SNSユーザとして居住地域の特定を防ぐ投稿をする際の指標としても将来的に使用できると考える.本稿ではまず,地理的特定性の定義を説明した後,Wikipedia データを用いた具体的な指標値の算出方法について述べる.その後,地理的特定性を文書ジオロケーション課題に適用した検証実験について述べ,地理的特定性の有効性を示す.

[20] 日本語 CommonGen の試作と入力単語間の関連性からの考察
〇鈴木 雅人(茨城大学),新納 浩幸(茨城大学)
常識推論は人工知能の難問の1つであり、その研究開発のためのタスクがいくつか提案されている。その一つとして CommonGen がある。CommonGen は、概略、数個の入力単語からそれら単語を用いた妥当な文を生成するタスクである。文法上正しい文であっても常識的にはおかしな文を生成することを避けるには常識推論が必要と考えられる。ただし T5 や BART などの文生成用の事前学習済みモデルを利用すれば、ある程度の質の文が生成できることも知られており、このアプローチが現実的である。そのようなアプローチを取った場合、所望の文が生成できるかどうかは入力単語間の関連性に依存していると予想している。本論文ではこの予想を確認するために、日本語 CommonGen のデータセットを試作し、このタスク用の T5 を用いたモデルを構築した。またこの予想から、モデルの性能を向上するために、入力単語群のハブとなる単語を追加する手法を提案する。

[21] CrossWeigh の日本語 NER データセットへの適用
〇西村 柾人(茨城大学),新納 浩幸(茨城大学)
通常、教師あり学習は訓練データには誤りがないという前提で学習が行われるが、実際には誤りを含む場合も多い。特に NER のデータセットはラベルの定義に曖昧なものがあり、複数の作業者でのタグ付けには誤りが生じやすい。このような背景から Wang らは誤ったラベルの付いたデータセットから NER のモデルを学習する CrossWeigh を提案した。本論文では CrossWeigh をストックマーク株式会社が提供している、Wikipediaの日本語NERデータセットに適用し、CrossWeigh の効果を確認する。同時に、このデータセット内の誤りの検出を試みる。

===================================

主査:
 須藤 克仁    奈良先端科学技術大学院大学
幹事:
 内海 慶     株式会社デンソーアイティーラボラトリ
 内田 ゆず    北海学園大学
 古宮 嘉那子   東京農工大学
 萩行 正嗣    株式会社ウェザーニューズ
 吉永 直樹    東京大学
 吉野 幸一郎   理化学研究所

運営委員:
 石垣 達也    産業技術総合研究所
 江原 遥     東京学芸大学
 大内 啓樹    奈良先端科学技術大学院大学
 梶原 智之    愛媛大学
 上垣外 英剛   奈良先端科学技術大学院大学
 亀甲 博貴    京都大学
 栗田 修平    理化学研究所
 小林 暁雄    農業・食品産業技術総合研究機構
 斉藤 いつみ   日本電信電話株式会社
 渋木 英潔    株式会社BESNA研究所
 田中 リベカ   お茶の水女子大学
 田村 晃裕    同志社大学
 成松 宏美    日本電信電話株式会社
 西田 京介    日本電信電話株式会社
 増村 亮     日本電信電話株式会社
 馬緤 美穂    ヤフー株式会社
 水本 智也    LINE株式会社
 三田 雅人    株式会社サイバーエージェント
 三輪 誠     豊田工業大学
 森田 一     富士通株式会社
 谷中 瞳     東京大学
 吉川 克正    LINE株式会社
 吉川 将司    Apple Japan合同会社
 鷲尾 光樹    株式会社リクルート